Применение кластерного анализа в Microsoft Excel. Кластерный анализ — это исследование путем разбиения множества объектов на однородные группы Кластерный анализ статистика

КЛАСТЕРНЫЙ АНАЛИЗ В ЗАДАЧАХ СОЦИАЛЬНО-ЭКОНОМИЧЕСКОГО ПРОГНОЗИРОВАНИЯ

Введение в кластерный анализ.

При анализе и прогнозировании социально-экономических явлений исследователь довольно часто сталкивается с многомерностью их описания. Это происходит при решении задачи сегментирования рынка, построении типологии стран по достаточно большому числу показателей, прогнозирования конъюнктуры рынка отдельных товаров, изучении и прогнозировании экономической депрессии и многих других проблем.

Методы многомерного анализа - наиболее действенный количественный инструмент исследования социально-экономических процессов, описываемых большим числом характеристик. К ним относятся кластерный анализ, таксономия, распознавание образов, факторный анализ.

Кластерный анализ наиболее ярко отражает черты многомерного анализа в классификации, факторный анализ – в исследовании связи.

Иногда подход кластерного анализа называют в литературе численной таксономией, численной классификацией, распознаванием с самообучением и т.д.

Первое применение кластерный анализ нашел в социологии. Название кластерный анализ происходит от английского слова cluster – гроздь, скопление. Впервые в 1939 был определен предмет кластерного анализа и сделано его описание исследователем Трионом. Главное назначение кластерного анализа – разбиение множества исследуемых объектов и признаков на однородные в соответствующем понимании группы или кластеры. Это означает, что решается задача классификации данных и выявления соответствующей структуры в ней. Методы кластерного анализа можно применять в самых различных случаях, даже в тех случаях, когда речь идет о простой группировке, в которой все сводится к образованию групп по количественному сходству.

Большое достоинство кластерного анализа в том, что он позволяет производить разбиение объектов не по одному параметру, а по целому набору признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов, и позволяет рассматривать множество исходных данных практически произвольной природы. Это имеет большое значение, например, для прогнозирования конъюнктуры, когда показатели имеют разнообразный вид, затрудняющий применение традиционных эконометрических подходов.

Кластерный анализ позволяет рассматривать достаточно большой объем информации и резко сокращать, сжимать большие массивы социально-экономической информации, делать их компактными и наглядными.

Важное значение кластерный анализ имеет применительно к совокупностям временных рядов, характеризующих экономическое развитие (например, общехозяйственной и товарной конъюнктуры). Здесь можно выделять периоды, когда значения соответствующих показателей были достаточно близкими, а также определять группы временных рядов, динамика которых наиболее схожа.

Кластерный анализ можно использовать циклически. В этом случае исследование производится до тех пор, пока не будут достигнуты необходимые результаты. При этом каждый цикл здесь может давать информацию, которая способна сильно изменить направленность и подходы дальнейшего применения кластерного анализа. Этот процесс можно представить системой с обратной связью.

В задачах социально-экономического прогнозирования весьма перспективно сочетание кластерного анализа с другими количественными методами (например, с регрессионным анализом).

Как и любой другой метод, кластерный анализ имеет определенные недостатки и ограничения: В частности, состав и количество кластеров зависит от выбираемых критериев разбиения. При сведении исходного массива данных к более компактному виду могут возникать определенные искажения, а также могут теряться индивидуальные черты отдельных объектов за счет замены их характеристиками обобщенных значений параметров кластера. При проведении классификации объектов игнорируется очень часто возможность отсутствия в рассматриваемой совокупности каких-либо значений кластеров.

В кластерном анализе считается, что:

а) выбранные характеристики допускают в принципе желательное разбиение на кластеры;

б) единицы измерения (масштаб) выбраны правильно.

Выбор масштаба играет большую роль. Как правило, данные нормализуют вычитанием среднего и делением на стандартное отклоненение, так что дисперсия оказывается равной единице.

Задача кластерного анализа.

Задача кластерного анализа заключается в том, чтобы на основании данных, содержащихся во множестве Х, разбить множество объектов G на m (m – целое) кластеров (подмножеств) Q1, Q2, …, Qm, так, чтобы каждый объект Gj принадлежал одному и только одному подмножеству разбиения и чтобы объекты, принадлежащие одному и тому же кластеру, были сходными, в то время, как объекты, принадлежащие разным кластерам были разнородными.

Например, пусть G включает n стран, любая из которых характеризуется ВНП на душу населения (F1), числом М автомашин на 1 тысячу человек (F2), душевым потреблением электроэнергии (F3), душевым потреблением стали (F4) и т.д. Тогда Х1 (вектор измерений) представляет собой набор указанных характеристик для первой страны, Х2 - для второй, Х3 для третьей, и т.д. Задача заключается в том, чтобы разбить страны по уровню развития.

Решением задачи кластерного анализа являются разбиения, удовлетворяющие некоторому критерию оптимальности. Этот критерий может представлять собой некоторый функционал, выражающий уровни желательности различных разбиений и группировок, который называют целевой функцией. Например, в качестве целевой функции может быть взята внутригрупповая сумма квадратов отклонения:

где xj - представляет собой измерения j-го объекта.

Для решения задачи кластерного анализа необходимо определить понятие сходства и разнородности.

Понятно то, что объекты i-ый и j-ый попадали бы в один кластер, когда расстояние (отдаленность) между точками Хi и Хj было бы достаточно маленьким и попадали бы в разные кластеры, когда это расстояние было бы достаточно большим. Таким образом, попадание в один или разные кластеры объектов определяется понятием расстояния между Хi и Хj из Ер, где Ер - р-мерное евклидово пространство. Неотрицательная функция d(Хi , Хj) называется функцией расстояния (метрикой), если:

а) d(Хi , Хj) ³ 0, для всех Хi и Хj из Ер

б) d(Хi, Хj) = 0, тогда и только тогда, когда Хi = Хj

в) d(Хi, Хj) = d(Хj, Хi)

г) d(Хi, Хj) £ d(Хi, Хk) + d(Хk, Хj), где Хj; Хi и Хk - любые три вектора из Ер.

Значение d(Хi, Хj) для Хi и Хj называется расстоянием между Хi и Хj и эквивалентно расстоянию между Gi и Gj соответственно выбранным характеристикам (F1, F2, F3, ..., Fр).

Наиболее часто употребляются следующие функции расстояний:

1. Евклидово расстояние d2(Хi , Хj) =

2. l1 - норма d1(Хi , Хj) =

3. Сюпремум - норма d¥ (Хi , Хj) = sup

k = 1, 2, ..., р

4. lp - норма dр(Хi , Хj) =

Евклидова метрика является наиболее популярной. Метрика l1 наиболее легкая для вычислений. Сюпремум-норма легко считается и включает в себя процедуру упорядочения, а lp - норма охватывает функции расстояний 1, 2, 3,.

Пусть n измерений Х1, Х2,..., Хn представлены в виде матрицы данных размером p ´n:

Тогда расстояние между парами векторов d(Хi , Хj) могут быть представлены в виде симметричной матрицы расстояний:

Понятием, противоположным расстоянию, является понятие сходства между объектами Gi. и Gj. Неотрицательная вещественная функция S(Хi ; Хj) = Sij называется мерой сходства, если:Величину Sij называют коэффициентом сходства.

1.3. Методы кластерного анализа.

Сегодня существует достаточно много методов кластерного анализа. Остановимся на некоторых из них (ниже приводимые методы принято называть методами минимальной дисперсии).

Пусть Х - матрица наблюдений: Х = (Х1, Х2,..., Хu) и квадрат евклидова расстояния между Хi и Хj определяется по формуле:

1) Метод полных связей.

Суть данного метода в том, что два объекта, принадлежащих одной и той же группе (кластеру), имеют коэффициент сходства, который меньше некоторого порогового значения S. В терминах евклидова расстояния d это означает, что расстояние между двумя точками (объектами) кластера не должно превышать некоторого порогового значения h. Таким образом, h определяет максимально допустимый диаметр подмножества, образующего кластер.

2) Метод максимального локального расстояния.

Каждый объект рассматривается как одноточечный кластер. Объекты группируются по следующему правилу: два кластера объединяются, если максимальное расстояние между точками одного кластера и точками другого минимально. Процедура состоит из n - 1 шагов и результатом являются разбиения, которые совпадают со всевозможными разбиениями в предыдущем методе для любых пороговых значений.

3) Метод Ворда.

В этом методе в качестве целевой функции применяют внутригрупповую сумму квадратов отклонений, которая есть ни что иное, как сумма квадратов расстояний между каждой точкой (объектом) и средней по кластеру, содержащему этот объект. На каждом шаге объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов. Этот метод направлен на объединение близко расположенных кластеров.

Random Forest - один из моих любимых алгоритмов data mining. Во-первых он невероятно универсален, с его помощью можно решать как задачи регрессии так и классификации. Проводить поиск аномалий и отбор предикторов. Во-вторых это тот алгоритм, который действительно сложно применить неправильно. Просто потому, что в отличии от других алгоритмов у него мало настраиваемых параметров. И еще он удивительно прост по своей сути. И в то же время он отличается удивительной точностью.

В чем же идея такого замечательного алгоритма? Идея проста: допустим у нас есть какой-то очень слабый алгоритм, скажем, . Если мы сделаем очень много разных моделей с использованием этого слабого алгоритма и усредним результат их предсказаний, то итоговый результат будет существенно лучше. Это, так называемое, обучение ансамбля в действии. Алгоритм Random Forest потому и называется "Случайный Лес", для полученных данных он создает множество деревьев приятия решений и потом усредняет результат их предсказаний. Важным моментом тут является элемент случайности в создании каждого дерева. Ведь понятно, что если мы создадим много одинаковых деревьев, то результат их усреднения будет обладать точностью одного дерева.

Как он работает? Предположим, у нас есть некие данные на входе. Каждая колонка соответствует некоторому параметру, каждая строка соответствует некоторому элементу данных.

Мы можем выбрать, случайным образом, из всего набора данных некоторое количество столбцов и строк и построить по ним дерево принятия решений.


Thursday, May 10, 2012

Thursday, January 12, 2012


Вот собственно и всё. 17-ти часовой перелет позади, Россия осталась за океаном. А в окно уютной 2-ух спальной квартиры на нас смотрит Сан-Франциско, знаменитая Кремниевая долина, Калифорния, США. Да, это и есть та самая причина, по которой я практически не писал последнее время. Мы переехали.

Всё это началось еще в апреле 2011 года, когда я проходил телефонное интервью в компании Zynga. Тогда это все казалось какой-то игрой не имеющей отношения к реальности и я и представить себе не мог, во что это выльется. В июне 2011 года Zynga приехали в Москву и провели серию собеседований, рассматривалось около 60 кандидатов прошедших телефонное интервью и из них было отобрано около 15 человек (точное число не знаю, кто-то потом передумал, кто-то сразу отказался). Интервью оказалось неожиданно простым. Ни тебе задачек на программирование, ни заковыристых вопросов про форму люков, в основном проверялись способности болтать. А знания, на мой взгляд, оценивались лишь поверхностно.

А дальше началась канитель. Сначала мы ждали результатов, потом офера, потом одобрение LCA, потом одобрения петиции на визу, потом документы из США, потом очередь в посольстве, потом дополнительную проверку, потом визу. Временами мне казалось, что я готов все бросить и забить. Временами я сомневался, а нужна ли нам эта Америка ведь и в России не плохо. Весь процесс занял где-то около полугода, в итоге, в середине декабря мы получили визы и начали готовиться к отъезду.

В понедельник был мой первый рабочий день на новом месте. В офисе созданы все условия для того чтобы не только работать, но и жить. Завтраки, обеды и ужины от собственных поваров, куча разнообразнейшей еды распиханной по всем уголкам, спортзал, массаж и даже парикмахер. Все это совершенно бесплатно для сотрудников. Многие добираются на работу на велосипеде и для хранения транспорта оборудовано несколько комнат. В общем, ничего подобного в России мне встречать не доводилось. Всему, однако, есть своя цена, нас сразу предупредили, что работать придется много. Что такое "много", по их меркам, мне не очень понятно.

Надеюсь, однако, что несмотря на количество работы, в обозримом будущем смогу возобновить ведение блога и, может быть, расскажу что-нибудь о американской жизни и работе программистом в Америке. Поживем - увидим. А пока, поздравляю всех с наступившим новым годом и рождеством и до новых встреч!


Для примера использования, распечатаем дивидендную доходность российских компаний. В качестве базовой цены, берем цену закрытия акции в день закрытия реестра. Почему-то на сайте тройки этой информации нет, а она ведь гораздо интересней чем абсолютные величины дивидендов.
Внимание! Код выполняется довольно долго, т.к. для каждой акции требуется сделать запрос на сервера finam и получить её стоимость.

Result <- NULL for(i in (1:length(divs[,1]))){ d <- divs if (d$Divs>0){ try({ quotes <- getSymbols(d$Symbol, src="Finam", from="2010-01-01", auto.assign=FALSE) if (!is.nan(quotes)){ price <- Cl(quotes) if (length(price)>0){ dd <- d$Divs result <- rbind(result, data.frame(d$Symbol, d$Name, d$RegistryDate, as.numeric(dd)/as.numeric(price), stringsAsFactors=FALSE)) } } }, silent=TRUE) } } colnames(result) <- c("Symbol", "Name", "RegistryDate", "Divs") result


Аналогично можно построить статистику для прошлых лет.

Кластерный анализ

Большинство исследователей склоняются к тому, что впервые термин «кластерный анализ» (англ. cluster - гроздь, сгусток, пучок) был предложен математиком Р.Трионом . Впоследствии возник ряд терминов, которые в настоящее время принято считать синонимами термина «кластерный анализ»: автоматическая классификация; ботриология.

Кластерный анализ - это многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы (кластеры)(Q-кластеризация, или Q-техника, собственно кластерный анализ). Кластер - группа элементов, характеризуемых общим свойством, главная цель кластерного анализа - нахождение групп схожих объектов в выборке. Спектр применений кластерного анализа очень широк: его используют в археологии, медицине, психологии, химии, биологии, государственном управлении, филологии, антропологии, маркетинге, социологии и других дисциплинах. Однако универсальность применения привела к появлению большого количества несовместимых терминов, методов и подходов, затрудняющих однозначное использование и непротиворечивую интерпретацию кластерного анализа. Орлов А. И. предлагает различать следующим образом:

Задачи и условия

Кластерный анализ выполняет следующие основные задачи :

  • Разработка типологии или классификации.
  • Исследование полезных концептуальных схем группирования объектов.
  • Порождение гипотез на основе исследования данных.
  • Проверка гипотез или исследования для определения, действительно ли типы (группы), выделенные тем или иным способом, присутствуют в имеющихся данных.

Независимо от предмета изучения применение кластерного анализа предполагает следующие этапы :

  • Отбор выборки для кластеризации. Подразумевается, что имеет смысл кластеризовать только количественные данные.
  • Определение множества переменных, по которым будут оцениваться объекты в выборке, то есть признакового пространства.
  • Вычисление значений той или иной меры сходства (или различия) между объектами.
  • Применение метода кластерного анализа для создания групп сходных объектов.
  • Проверка достоверности результатов кластерного решения.

Кластерный анализ предъявляет следующие требования к данным :

  1. показатели не должны коррелировать между собой;
  2. показатели не должны противоречить теории измерений;
  3. распределение показателей должно быть близко к нормальному;
  4. показатели должны отвечать требованию «устойчивости», под которой понимается отсутствие влияния на их значения случайных факторов;
  5. выборка должна быть однородна, не содержать «выбросов».

Можно встретить описание двух фундаментальных требований предъявляемых к данным - однородность и полнота:

Однородность требует, чтобы все сущности, представленные в таблице, были одной природы. Требование полноты состоит в том, чтобы множества I и J представляли полную опись проявлений рассматриваемого явления. Если рассматривается таблица в которой I - совокупность, а J - множество переменных, описывающих эту совокупность, то должно должно быть представительной выборкой из изучаемой совокупности, а система характеристик J должна давать удовлетворительное векторное представление индивидов i с точки зрения исследователя .

Если кластерному анализу предшествует факторный анализ , то выборка не нуждается в «ремонте» - изложенные требования выполняются автоматически самой процедурой факторного моделирования (есть ещё одно достоинство - z-стандартизация без негативных последствий для выборки; если её проводить непосредственно для кластерного анализа, она может повлечь за собой уменьшение чёткости разделения групп). В противном случае выборку нужно корректировать.

Типология задач кластеризации

Типы входных данных

В современной науке применяется несколько алгоритмов обработки входных данных. Анализ путём сравнения объектов, исходя из признаков, (наиболее распространённый в биологических науках) называется Q -типом анализа, а в случае сравнения признаков, на основе объектов - R -типом анализа. Существуют попытки использования гибридных типов анализа (например, RQ -анализ), но данная методология ещё должным образом не разработана.

Цели кластеризации

  • Понимание данных путём выявления кластерной структуры. Разбиение выборки на группы схожих объектов позволяет упростить дальнейшую обработку данных и принятия решений, применяя к каждому кластеру свой метод анализа (стратегия «разделяй и властвуй »).
  • Сжатие данных . Если исходная выборка избыточно большая, то можно сократить её, оставив по одному наиболее типичному представителю от каждого кластера.
  • Обнаружение новизны (англ. novelty detection ). Выделяются нетипичные объекты, которые не удаётся присоединить ни к одному из кластеров.

В первом случае число кластеров стараются сделать поменьше. Во втором случае важнее обеспечить высокую степень сходства объектов внутри каждого кластера, а кластеров может быть сколько угодно. В третьем случае наибольший интерес представляют отдельные объекты, не вписывающиеся ни в один из кластеров.

Во всех этих случаях может применяться иерархическая кластеризация , когда крупные кластеры дробятся на более мелкие, те в свою очередь дробятся ещё мельче, и т. д. Такие задачи называются задачами таксономии . Результатом таксономии является древообразная иерархическая структура. При этом каждый объект характеризуется перечислением всех кластеров, которым он принадлежит, обычно от крупного к мелкому.

Методы кластеризации

Общепринятой классификации методов кластеризации не существует, но можно отметить солидную попытку В. С. Берикова и Г. С. Лбова . Если обобщить различные классификации методов кластеризации, то можно выделить ряд групп (некоторые методы можно отнести сразу к нескольким группам и потому предлагается рассматривать данную типизацию как некоторое приближение к реальной классификации методов кластеризации):

  1. Вероятностный подход . Предполагается, что каждый рассматриваемый объект относится к одному из k классов. Некоторые авторы (например, А. И. Орлов) считают, что данная группа вовсе не относится к кластеризации и противопоставляют её под названием «дискриминация», то есть выбор отнесения объектов к одной из известных групп (обучающих выборок).
  2. Подходы на основе систем искусственного интеллекта . Весьма условная группа, так как методов AI очень много и методически они весьма различны.
  3. Логический подход . Построение дендрограммы осуществляется с помощью дерева решений.
  4. Теоретико-графовый подход .
    • Графовые алгоритмы кластеризации
  5. Иерархический подход . Предполагается наличие вложенных групп (кластеров различного порядка). Алгоритмы в свою очередь подразделяются на агломеративные (объединительные) и дивизивные (разделяющие). По количеству признаков иногда выделяют монотетические и политетические методы классификации.
    • Иерархическая дивизивная кластеризация или таксономия. Задачи кластеризации рассматриваются в количественной таксономии.
  6. Другие методы . Не вошедшие в предыдущие группы.
    • Статистические алгоритмы кластеризации
    • Ансамбль кластеризаторов
    • Алгоритмы семейства KRAB
    • Алгоритм, основанный на методе просеивания
    • DBSCAN и др.

Подходы 4 и 5 иногда объединяют под названием структурного или геометрического подхода, обладающего большей формализованностью понятия близости . Несмотря на значительные различия между перечисленными методами все они опираются на исходную «гипотезу компактности »: в пространстве объектов все близкие объекты должны относиться к одному кластеру, а все различные объекты соответственно должны находиться в различных кластерах.

Формальная постановка задачи кластеризации

Пусть - множество объектов, - множество номеров (имён, меток) кластеров. Задана функция расстояния между объектами . Имеется конечная обучающая выборка объектов . Требуется разбить выборку на непересекающиеся подмножества, называемые кластерами , так, чтобы каждый кластер состоял из объектов, близких по метрике , а объекты разных кластеров существенно отличались. При этом каждому объекту приписывается номер кластера .

Алгоритм кластеризации - это функция , которая любому объекту ставит в соответствие номер кластера . Множество в некоторых случаях известно заранее, однако чаще ставится задача определить оптимальное число кластеров, с точки зрения того или иного критерия качества кластеризации.

Кластеризация (обучение без учителя) отличается от классификации (обучения с учителем) тем, что метки исходных объектов изначально не заданы, и даже может быть неизвестно само множество .

Решение задачи кластеризации принципиально неоднозначно, и тому есть несколько причин (как считает ряд авторов):

  • не существует однозначно наилучшего критерия качества кластеризации. Известен целый ряд эвристических критериев, а также ряд алгоритмов, не имеющих чётко выраженного критерия, но осуществляющих достаточно разумную кластеризацию «по построению». Все они могут давать разные результаты. Следовательно, для определения качества кластеризации требуется эксперт предметной области, который бы мог оценить осмысленность выделения кластеров.
  • число кластеров, как правило, неизвестно заранее и устанавливается в соответствии с некоторым субъективным критерием. Это справедливо только для методов дискриминации, так как в методах кластеризации выделение кластеров идёт за счёт формализованного подхода на основе мер близости.
  • результат кластеризации существенно зависит от метрики, выбор которой, как правило, также субъективен и определяется экспертом. Но стоит отметить, что есть ряд рекомендаций к выбору мер близости для различных задач.

Применение

В биологии

В биологии кластеризация имеет множество приложений в самых разных областях. Например, в биоинформатике с помощью нее анализируются сложные сети взаимодействующих генов, состоящие порой из сотен или даже тысяч элементов. Кластерный анализ позволяет выделить подсети, узкие места, концентраторы и другие скрытые свойства изучаемой системы, что позволяет в конечном счете узнать вклад каждого гена в формирование изучаемого феномена.

В области экологии широко применяется для выделения пространственно однородных групп организмов, сообществ и т. п. Реже методы кластерного анализа применяются для исследования сообществ во времени. Гетерогенность структуры сообществ приводит к возникновению нетривиальных методов кластерного анализа (например, метод Чекановского).

В общем стоит отметить, что исторически сложилось так, что в качестве мер близости в биологии чаще используются меры сходства , а не меры различия (расстояния).

В социологии

При анализе результатов социологических исследований рекомендуется осуществлять анализ методами иерархического агломеративного семейства, а именно методом Уорда, при котором внутри кластеров оптимизируется минимальная дисперсия, в итоге создаются кластеры приблизительно равных размеров. Метод Уорда наиболее удачен для анализа социологических данных. В качестве меры различия лучше квадратичное евклидово расстояние, которое способствует увеличению контрастности кластеров. Главным итогом иерархического кластерного анализа является дендрограмма или «сосульчатая диаграмма». При её интерпретации исследователи сталкиваются с проблемой того же рода, что и толкование результатов факторного анализа - отсутствием однозначных критериев выделения кластеров. В качестве главных рекомендуется использовать два способа - визуальный анализ дендрограммы и сравнение результатов кластеризации, выполненной различными методами.

Визуальный анализ дендрограммы предполагает «обрезание» дерева на оптимальном уровне сходства элементов выборки. «Виноградную ветвь» (терминология Олдендерфера М. С. и Блэшфилда Р. К. ) целесообразно «обрезать» на отметке 5 шкалы Rescaled Distance Cluster Combine, таким образом будет достигнут 80 % уровень сходства. Если выделение кластеров по этой метке затруднено (на ней происходит слияние нескольких мелких кластеров в один крупный), то можно выбрать другую метку. Такая методика предлагается Олдендерфером и Блэшфилдом.

Теперь возникает вопрос устойчивости принятого кластерного решения. По сути, проверка устойчивости кластеризации сводится к проверке её достоверности. Здесь существует эмпирическое правило - устойчивая типология сохраняется при изменении методов кластеризации. Результаты иерархического кластерного анализа можно проверять итеративным кластерным анализом по методу k-средних. Если сравниваемые классификации групп респондентов имеют долю совпадений более 70 % (более 2/3 совпадений), то кластерное решение принимается.

Проверить адекватность решения, не прибегая к помощи другого вида анализа, нельзя. По крайней мере, в теоретическом плане эта проблема не решена. В классической работе Олдендерфера и Блэшфилда «Кластерный анализ» подробно рассматриваются и в итоге отвергаются дополнительные пять методов проверки устойчивости:

В информатике

  • Кластеризация результатов поиска - используется для «интеллектуальной» группировки результатов при поиске файлов , веб-сайтов , других объектов , предоставляя пользователю возможность быстрой навигации, выбора заведомо более релевантного подмножества и исключения заведомо менее релевантного - что может повысить юзабилити интерфейса по сравнению с выводом в виде простого сортированного по релевантности списка .
    • Clusty - кластеризующая поисковая машина компании Vivísimo
    • Nigma - российская поисковая система с автоматической кластеризацией результатов
    • Quintura - визуальная кластеризация в виде облака ключевых слов
  • Сегментация изображений (англ. image segmentation ) - Кластеризация может быть использована для разбиения цифрового изображения на отдельные области с целью обнаружения границ (англ. edge detection ) или распознавания объектов .
  • Интеллектуальный анализ данных (англ. data mining) - Кластеризация в Data Mining приобретает ценность тогда, когда она выступает одним из этапов анализа данных, построения законченного аналитического решения. Аналитику часто легче выделить группы схожих объектов, изучить их особенности и построить для каждой группы отдельную модель, чем создавать одну общую модель для всех данных. Таким приемом постоянно пользуются в маркетинге, выделяя группы клиентов, покупателей, товаров и разрабатывая для каждой из них отдельную стратегию.

См. также

Примечания

Ссылки

На русском языке
  • www.MachineLearning.ru - профессиональный вики-ресурс, посвященный машинному обучению и интеллектуальному анализу данных
На английском языке
  • COMPACT - Comparative Package for Clustering Assessment . A free Matlab package, 2006.
  • P. Berkhin, Survey of Clustering Data Mining Techniques , Accrue Software, 2002.
  • Jain, Murty and Flynn: Data Clustering: A Review , ACM Comp. Surv., 1999.
  • for another presentation of hierarchical, k-means and fuzzy c-means see this introduction to clustering . Also has an explanation on mixture of Gaussians.
  • David Dowe, Mixture Modelling page - other clustering and mixture model links.
  • a tutorial on clustering
  • The on-line textbook: Information Theory, Inference, and Learning Algorithms , by David J.C. MacKay includes chapters on k-means clustering, soft k-means clustering, and derivations including the E-M algorithm and the variational view of the E-M algorithm.
  • «The Self-Organized Gene» , tutorial explaining clustering through competitive learning and self-organizing maps.
  • kernlab - R package for kernel based machine learning (includes spectral clustering implementation)
  • Tutorial - Tutorial with introduction of Clustering Algorithms (k-means, fuzzy-c-means, hierarchical, mixture of gaussians) + some interactive demos (java applets)
  • Data Mining Software - Data mining software frequently utilizes clustering techniques.
  • Java Competitve Learning Application A suite of Unsupervised Neural Networks for clustering. Written in Java. Complete with all source code.
  • Machine Learning Software - Also contains much clustering software.

Задачи кластеризации в Data Mining

Введение в кластерный анализ

Из всей обширной области применения кластерного анализа,например, задачи социально-экономического прогнозирования.

При анализе и прогнозировании социально-экономических явлений исследователь довольно часто сталкивается с многомерностью их описания. Этопроисходит при решении задачи сегментирования рынка, построении типологии стран по достаточно большому числу показателей, прогнозирования конъюнктуры рынка отдельных товаров, изучении и прогнозировании экономической депрессии и многих других проблем.

Методы многомерного анализа - наиболее действенный количественный инструмент исследования социально-экономических процессов, описываемых большимчислом характеристик. К ним относятся кластерный анализ, таксономия, распознавание образов, факторный анализ.

Кластерный анализ наиболее ярко отражает черты многомерного анализа в классификации, факторный анализ – в исследовании связи.

Иногда подход кластерного анализа называют в литературе численной таксономией, численной классификацией, распознаванием с самообучением и т.д.

Первое применение кластерный анализ нашел в социологии. Название кластерный анализ происходит от английского слова cluster – гроздь, скопление. Впервые в 1939 был определен предмет кластерного анализа и сделано его описание исследователем Трионом. Главное назначение кластерного анализа – разбиение множества исследуемых объектов и признаков на однородные в соответствующем понимании группы или кластеры. Это означает, что решается задача классификации данных и выявления соответствующей структуры в ней. Методы кластерного анализа можно применять в самых различных случаях, даже в тех случаях, когда речь идет о простой группировке, в которой все сводится к образованию групп по количественному сходству.

Большое достоинство кластерного анализа в том, что он позволяет производить разбиение объектов не по одному параметру, а по целому набору признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов, и позволяет рассматривать множество исходных данных практически произвольной природы. Это имеет большое значение, например, для прогнозирования конъюнктуры, когда показатели имеют разнообразный вид, затрудняющий применение традиционных эконометрических подходов.

Кластерный анализ позволяет рассматривать достаточно большой объем информации и резко сокращать, сжимать большие массивы социально-экономической информации, делать ихкомпактными и наглядными.

Важное значение кластерный анализ имеет применительно к совокупностям временных рядов, характеризующих экономическое развитие (например, общехозяйственной и товарной конъюнктуры). Здесь можно выделять периоды, когда значения соответствующих показателей были достаточно близкими, а также определять группы временных рядов, динамика которых наиболее схожа.

Кластерный анализ можно использовать циклически. В этом случае исследование производится до тех пор, пока не будут достигнуты необходимые результаты. При этом каждый цикл здесь может давать информацию, которая способна сильно изменить направленность и подходы дальнейшего применения кластерного анализа. Этот процесс можно представить системой с обратной связью.

В задачахсоциально-экономического прогнозирования весьма перспективно сочетание кластерного анализас другими количественными методами (например, с регрессионным анализом).

Как и любой другой метод, кластерный анализ имеет определенные недостаткии ограничения : В частности, состави количество кластеров зависит отвыбираемых критериев разбиения. При сведении исходного массива данных к более компактному виду могут возникать определенные искажения, а также могут теряться индивидуальные черты отдельных объектов за счетзамены их характеристиками обобщенных значений параметров кластера. При проведении классификации объектов игнорируется очень часто возможность отсутствия в рассматриваемойсовокупности каких-либо значений кластеров.

В кластерном анализе считается, что:

а) выбранные характеристики допускают в принципе желательное разбиение на кластеры;

б) единицы измерения (масштаб) выбраны правильно.

Выбор масштаба играет большую роль. Как правило, данные нормализуют вычитанием среднего и делением на стандартное отклоненение, так что дисперсия оказывается равной единице.

1.Задача кластеризации

Задача кластеризации заключается в том, чтобы на основании данных, содержащихся во множестве Х , разбить множество объектов G на m (m – целое) кластеров (подмножеств) Q 1 , Q 2 , …, Q m , так, чтобы каждый объект G j принадлежал одному и только одному подмножеству разбиения и чтобы объекты, принадлежащие одному и тому же кластеру, были сходными, в то время, как объекты, принадлежащие разным кластерам были разнородными.

Например, пусть G включает n стран, любая из которых характеризуется ВНП на душу населения (F 1 ), числом М автомашин на 1 тысячу человек (F 2 ), душевым потреблением электроэнергии (F 3 ), душевым потреблением стали (F 4 ) и т.д. Тогда Х 1 (вектор измерений) представляет собой набор указанных характеристик для первой страны, Х 2 - для второй, Х 3 для третьей, и т.д. Задача заключается в том, чтобы разбить страны по уровню развития.

Решением задачи кластерного анализа являются разбиения, удовлетворяющие некоторому критерию оптимальности. Этот критерий может представлять собой некоторый функционал, выражающий уровни желательности различных разбиений и группировок, который называют целевой функцией. Например, в качестве целевой функции может быть взята внутригрупповая сумма квадратов отклонения:

где x j - представляет собой измерения j -го объекта.

Для решениязадачи кластерного анализа необходимо определить понятие сходства и разнородности.

Понятно то, что объекты i -ый и j -ый попадали бы в один кластер, когда расстояние (отдаленность) между точками Х i и Х j было бы достаточно маленьким и попадали бы в разные кластеры, когда это расстояние было бы достаточно большим. Таким образом, попадание в один или разные кластеры объектов определяется понятием расстояния между Х i и Х j из Ер , где Ер - р -мерное евклидово пространство. Неотрицательная функция d(Х i , Х j) называется функцией расстояния (метрикой), если:

а) d(Х i , Х j) ³ 0 , для всех Х i и Х j из Ер

б) d(Х i , Х j) = 0 , тогда и только тогда, когда Х i = Х j

в) d(Х i , Х j) = d(Х j , Х i )

г) d(Х i , Х j) £ d(Х i , Х k) + d(Х k , Х j), где Х j ; Х i и Х k - любые три вектора из Ер .

Значение d(Х i , Х j) для Х i и Х j называется расстоянием между Х i и Х j и эквивалентно расстоянию между G i и G j соответственно выбранным характеристикам (F 1 , F 2 , F 3 , ..., F р).

Наиболее часто употребляются следующие функции расстояний:

1. Евклидово расстояние d 2 (Х i , Х j) =

2. l 1 - нормаd 1 (Х i , Х j) =

3. Супремум - норма d ¥ i , Х j) = sup

k = 1, 2, ..., р

4. l p - норма d р (Х i , Х j) =

Евклидова метрика является наиболее популярной. Метрика l 1 наиболее легкая для вычислений. Супремум-норма легко считается и включает в себя процедуру упорядочения, а l p - норма охватывает функции расстояний 1, 2, 3,.

Пусть n измерений Х 1 , Х 2 ,..., Х n представлены в виде матрицы данных размером p ´ n :

Тогда расстояние между парами векторов d(Х i , Х j) могут быть представлены в виде симметричной матрицы расстояний:

Понятием, противоположным расстоянию, является понятие сходства между объектами G i . и G j . Неотрицательная вещественная функция S(Х i ; Х j) = S i j называется мерой сходства, если:

1) 0 £ S(Х i , Х j) < 1 для Х i ¹ Х j

2) S( Х i , Х i ) = 1

3) S( Х i , Х j ) = S(Х j , Х i )

Пары значений мер сходства можно объединить в матрицу сходства:

Величину S ij называют коэффициентом сходства.

2. Методы кластеризации

Сегодня существует достаточно много методов кластерного анализа. Остановимся на некоторых из них (ниже приводимые методы принято называть методами минимальной дисперсии).

Пусть Х - матрица наблюдений: Х = (Х 1 , Х 2 ,..., Х u) и квадрат евклидова расстояния между Х i и Х j определяется по формуле:

1) Метод полных связей.

Суть данного метода в том, что два объекта, принадлежащих одной и той же группе (кластеру), имеют коэффициент сходства, который меньше некоторого порогового значения S . В терминах евклидова расстояния d это означает, что расстояние между двумя точками (объектами) кластера не должно превышать некоторого порогового значения h . Таким образом, h определяет максимально допустимый диаметр подмножества, образующего кластер.

2) Метод максимального локального расстояния.

Каждый объект рассматривается как одноточечный кластер. Объекты группируются по следующему правилу: два кластера объединяются, если максимальное расстояние между точками одного кластера и точками другого минимально. Процедура состоит из n - 1 шагов и результатом являются разбиения, которые совпадают со всевозможными разбиениями в предыдущем методе для любых пороговых значений.

3) Метод Ворда .

В этом методе в качестве целевой функции применяют внутригрупповую сумму квадратов отклонений, которая есть ни что иное, как сумма квадратов расстояний между каждой точкой (объектом) и средней по кластеру, содержащему этот объект. На каждом шаге объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов. Этот метод направлен на объединение близко расположенных кластеров.

4) Центроидный метод.

Расстояние между двумя кластерами определяется как евклидово расстояние между центрами (средними) этих кластеров:

d 2 ij =(` X – ` Y) Т (` X – ` Y) Кластеризация идет поэтапно на каждом из n–1 шагов объединяют два кластера G и p , имеющие минимальное значение d 2 ij Если n 1 много больше n 2 , то центры объединения двух кластеров близки друг к другу и характеристикивторого кластера при объединении кластеров практически игнорируются. Иногда этот метод иногда называют еще методом взвешенных групп.

3. Алгоритм последовательной кластеризации

Рассмотрим Ι = (Ι 1 , Ι 2 , … Ι n ) как множество кластеров {Ι 1 } , {Ι 2 },…{Ι n } . Выберем два из них, например, Ι i и Ι j , которые в некотором смысле более близки друг к другу и объединим их в один кластер. Новое множество кластеров, состоящее уже из n -1 кластеров, будет:

{Ι 1 }, {Ι 2 }…, i , Ι j }, …, {Ι n } .

Повторяя процесс, получим последовательные множества кластеров, состоящие из (n -2), (n -3), (n –4) и т.д. кластеров. В конце процедуры можно получить кластер, состоящий из n объектов и совпадающий с первоначальным множеством Ι = (Ι 1 , Ι 2 , … Ι n ) .

В качестве меры расстояния возьмем квадрат евклидовой метрикиd i j 2 . и вычислим матрицу D = {d i j 2 }, где d i j 2 - квадрат расстояния между

Ι i и Ι j:

….

Ι n

d 12 2

d 13 2

….

d 1n 2

d 23 2

….

d 2n 2

….

d 3n 2

….

….

….

Ι n

Пусть расстояние между Ι i и Ι j будет минимальным:

d i j 2 = min {d i j 2 , i ¹ j}. Образуем с помощью Ι i и Ι j новый кластер

i , Ι j } . Построим новую ((n-1), (n-1)) матрицу расстояния

{ Ι i , Ι j }

….

Ι n

{ Ι i ; Ι j }

d i j 2 1

d i j 2 2

….

d i j 2 n

d 12 2

d 1 3

….

d 1 2 n

….

d 2 n

….

d 3n

(n -2) строки для последней матрицы взяты из предыдущей, а первая строка вычислена заново. Вычисления могут быть сведенык минимуму, если удастся выразить d i j 2 k ,k = 1, 2,…, n ; (k ¹ i ¹ j) через элементы первоначальной матрицы.

Исходно определено расстояние лишь между одноэлементными кластерами, но надо определять расстояния и между кластерами, содержащими более чем один элемент. Это можно сделать различными способами, и в зависимости от выбранного способа мы получают алгоритмы кластер анализа с различными свойствами. Можно, например, положить расстояние между кластером i + j и некоторым другим кластером k , равным среднему арифметическому из расстояний между кластерами i и k и кластерами j и k :

d i+j,k = ½ (d i k + d j k).

Но можно также определить d i+j,k как минимальное из этих двух расстояний:

d i+j,k = min (d i k + d j k).

Таким образом, описан первый шаг работы агломеративного иерархического алгоритма. Последующие шаги аналогичны.

Довольно широкий класс алгоритмов может быть получен, если для перерасчета расстояний использовать следующую общую формулу:

d i+j,k = A(w) min(d ik d jk) + B(w) max(d ik d jk), где

A(w) = , если d ik £ d jk

A(w) = , если d ik > d jk

B(w) = , если d i k £ d jk

B (w ) = , если d ik > d jk

где n i и n j - число элементов в кластерах i и j , а w – свободный параметр, выбор которого определяет конкретный алгоритм. Например, при w = 1 мы получаем, так называемый, алгоритм «средней связи», для которого формула перерасчета расстояний принимает вид:

d i+j,k =

В данном случае расстояние между двумя кластерами на каждом шаге работы алгоритма оказывается равным среднему арифметическому из расстояний между всеми такими парами элементов, что один элемент пары принадлежитк одному кластеру, другой - к другому.

Наглядный смысл параметра w становится понятным, если положить w ® ¥ . Формула пересчета расстояний принимает вид:

d i+j,k = min (d i ,k d jk)

Это будеттак называемый алгоритм «ближайшего соседа», позволяющий выделять кластеры сколь угодно сложной формы при условии, что различные части таких кластеров соединены цепочками близких друг к другу элементов. В данном случае расстояние между двумя кластерами на каждом шаге работы алгоритма оказывается равным расстоянию между двумя самыми близкими элементами, принадлежащими к этим двум кластерам.

Довольно часто предполагают, что первоначальные расстояния (различия) между группируемыми элементамизаданы. В некоторыхзадачах это действительно так. Однако, задаются только объекты и их характеристики и матрицу расстояний строят исходя из этих данных. В зависимости от того, вычисляются ли расстояния между объектами или между характеристиками объектов, используются разные способы.

В случае кластер анализа объектов наиболее часто мерой различия служит либо квадрат евклидова расстояния

(где x ih , x jh - значения h -го признака для i -го и j -го объектов, а m - число характеристик), либо само евклидово расстояние. Если признакам приписывается разный вес, то эти веса можно учесть при вычислении расстояния

Иногда в качестве меры различияиспользуется расстояние, вычисляемое по формуле:

которые называют: "хэмминговым", "манхэттенским" или "сити-блок" расстоянием.

Естественноймерой сходства характеристик объектов во многих задачах является коэффициент корреляции между ними

где m i ,m j , d i , d j - соответственно средние и среднеквадратичные отклонения для характеристик i и j . Мерой различия между характеристиками может служить величина1 - r . В некоторых задачахзнак коэффициента корреляции несуществен и зависит лишь отвыбора единицы измерения. В этом случае в качестве меры различиямежду характеристиками используется ô 1 - r i j ô

4. Число кластеров

Очень важным вопросом является проблема выбора необходимого числа кластеров. Иногда можно m число кластеров выбирать априорно. Однако в общем случае это число определяется в процессе разбиениямножества на кластеры.

Проводились исследования Фортьером и Соломоном, и было установлено, что число кластеров должно быть принято для достижения вероятности a того, что найдено наилучшее разбиение. Таким образом, оптимальное число разбиений является функцией заданной доли b наилучших или в некотором смысле допустимых разбиений во множествевсех возможных. Общее рассеяние будет тем больше, чем выше доля b допустимых разбиений. Фортьер и Соломон разработали таблицу, по которой можно найти число необходимых разбиений. S(a , b ) в зависимости от a и b (где a - вероятность того, что найдено наилучшее разбиение, b - доля наилучших разбиений в общем числе разбиений) Причем в качестве меры разнородности используется не мера рассеяния, а мера принадлежности, введенная Хользенгером и Харманом. Таблица значений S( a , b ) приводится ниже.

Таблица значений S( a , b )

b \ a

0.20

0.10

0.05

0.01

0.001

0.0001

0.20

8

11

14

21

31

42

0.10

16

22

29

44

66

88

0.05

32

45

59

90

135

180

0.01

161

230

299

459

689

918

0.001

1626

2326

3026

4652

6977

9303

0.0001

17475

25000

32526

55000

75000

100000

Довольно часто критерием объединения (числа кластеров) становится изменение соответствующей функции. Например, суммы квадратов отклонений:

Процессу группировки должно соответствовать здесь последовательное минимальное возрастание значения критерия E . Наличие резкого скачка в значении E можно интерпретировать как характеристику числа кластеров, объективно существующих в исследуемой совокупности.

Итак, второй способ определения наилучшего числа кластеров сводится к выявлению скачков, определяемых фазовым переходом от сильно связанного к слабосвязанному состоянию объектов.

5. Дендограммы

Наиболее известный метод представления матрицы расстояний или сходства основан на идее дендограммы или диаграммы дерева. Дендограмму можно определить как графическое изображение результатов процессапоследовательной кластеризации, которая осуществляется в терминах матрицы расстояний. С помощью дендограммы можно графически или геометрически изобразить процедуру кластеризации при условии, что эта процедура оперирует толькос элементами матрицы расстояний или сходства.

Существуетмного способов построения дендограмм. В дендограмме объектырасполагаются вертикально слева, результатыкластеризации – справа. Значения расстояний или сходства, отвечающие строению новых кластеров, изображаются по горизонтальной прямой поверх дендограмм.

Рис1

На рисунке 1 показан один из примеровдендограммы. Рис 1 соответствует случаю шести объектов ( n =6) и k характеристик (признаков). Объекты А и С наиболее близки и поэтому объединяются в один кластер на уровне близости, равном 0,9. Объекты D и Е объединяютсяпри уровне 0,8. Теперь имеем 4 кластера:

(А, С), ( F ), ( D , E ), ( B ) .

Далее образуются кластеры (А, С, F ) и ( E , D , B ) , соответствующие уровню близости, равному 0,7 и 0,6. Окончательно все объекты группируются в один кластер при уровне 0,5.

Вид дендограммы зависит от выбора меры сходстваили расстояния между объектоми кластером и метода кластеризации. Наиболее важным моментом является выбор меры сходства или меры расстояния между объектом и кластером.

Число алгоритмов кластерного анализа слишком велико. Все их можноподразделить на иерархическиеи неиерархические.

Иерархические алгоритмы связаны с построением дендограмм и делятся на:

а) агломеративные, характеризуемые последовательным объединениемисходных элементов и соответствующим уменьшением числа кластеров;

б) дивизимные (делимые), в которых число кластеров возрастает, начиная с одного, в результате чего образуется последовательностьрасщепляющих групп.

Алгоритмы кластерного анализа имеют сегодня хорошую программную реализацию, которая позволяет решить задачи самой большой размерности.

6. Данные

Кластерный анализ можно применять к интервальным данным, частотам, бинарным данным. Важно, чтобы переменные изменялись в сравнимых шкалах.

Неоднородность единиц измерения и вытекающая отсюда невозможность обоснованного выражения значений различных показателей в одном масштабе приводит к тому, что величина расстояний между точками, отражающими положение объектов в пространстве их свойств, оказывается зависящей от произвольно избираемого масштаба. Чтобы устранить неоднородность измерения исходных данных, все их значения предварительно нормируются, т.е. выражаются через отношение этих значенийк некоторой величине, отражающей определенные свойства данного показателя. Нормирование исходных данных для кластерного анализа иногда проводится посредством деления исходных величин на среднеквадратичное отклонение соответствующих показателей. Другой способ сводиться к вычислению, так называемого, стандартизованного вклада. Его еще называют Z -вкладом.

Z -вклад показывает, сколько стандартных отклонений отделяет данное наблюдение от среднего значения:

Где x i – значение данного наблюдения, – среднее, S – стандартное отклонение.

Среднее для Z -вкладов является нулевым и стандартное отклонение равно 1.

Стандартизация позволяет сравнивать наблюдения из различных распределений. Если распределение переменной является нормальным (или близким к нормальному), и средняя и дисперсия известны или оцениваются по большим выборным, то Z -вклад для наблюдения обеспечивает более специфическую информацию о его расположении.

Заметим, что методы нормирования означают признание всех признаков равноценными с точки зрения выяснения сходства рассматриваемых объектов. Уже отмечалось, что применительно к экономике признание равноценности различных показателей кажется оправданным отнюдь не всегда. Было бы, желательным наряду с нормированием придать каждому из показателей вес, отражающий его значимость в ходе установления сходств и различий объектов.

В этой ситуации приходится прибегать к способу определения весов отдельных показателей – опросу экспертов. Например, при решении задачи о классификации стран по уровню экономического развития использовались результаты опроса 40 ведущих московских специалистов по проблемам развитых стран по десятибалльной шкале:

обобщенные показатели социально-экономического развития – 9 баллов;

показатели отраслевого распределения занятого населения – 7 баллов;

показатели распространенности наемного труда – 6 баллов;

показатели, характеризующие человеческий элемент производительных сил – 6 баллов;

показатели развития материальных производительных сил – 8 баллов;

показатель государственных расходов – 4балла;

«военно-экономические» показатели – 3 балла;

социально-демографические показатели – 4 балла.

Оценки экспертов отличались сравнительно высокой устойчивостью.

Экспертные оценки дают известное основание для определения важности индикаторов, входящих в ту или иную группу показателей. Умножение нормированных значений показателей на коэффициент, соответствующий среднему баллу оценки, позволяет рассчитывать расстояния между точками, отражающими положение стран в многомерном пространстве, с учетом неодинакового веса их признаков.

Довольно часто при решенииподобных задач используют не один, а два расчета: первый, в котором все признаки считаются равнозначными, второй, где им придаются различные веса в соответствии со средними значениями экспертных оценок.

7. Применение кластерного анализа

Рассмотрим некоторые приложения кластерного анализа.

1. Деление стран на группы по уровню развития.

Изучались 65 стран по 31 показателю (национальный доход на душу населения, доля населения занятого в промышленности в %, накопления на душу населения, доля населения, занятого в сельском хозяйстве в %, средняя продолжительность жизни, число автомашин на 1 тыс. жителей, численность вооруженных сил на 1 млн. жителей, доля ВВП промышленности в %, доля ВВП сельского хозяйства в %, и т.д.)

Каждая из стран выступает в данном рассмотрении как объект, характеризуемый определенными значениями 31 показателя. Соответственно они могут быть представлены в качестве точек в 31-мерном пространстве. Такое пространство обычно называется пространством свойств изучаемых объектов. Сравнениерасстояния между этими точками будет отражать степень близости рассматриваемых стран, их сходство друг с другом. Социально-экономический смысл подобного понимания сходства означает, что страны считаются тем более похожими, чем меньше различия между одноименными показателями, с помощью которых они описываются.

Первый шаг подобного анализа заключается в выявлении пары народных хозяйств, учтенных в матрице сходства, расстояние между которыми является наименьшим. Это, очевидно, будут наиболее сходные, похожие экономики. В последующем рассмотрении обе эти страны считаются единой группой, единым кластером. Соответственно исходная матрица преобразуется так, что ее элементами становятся расстояния между всеми возможными парами уже не 65, а 64 объектами – 63 экономики и вновь преобразованного кластера – условного объединения двух наиболее похожих стран. Из исходной матрицы сходства выбрасываются строки и столбцы, соответствующие расстояниям от пары стран, вошедших в объедение, до всех остальных, но зато добавляются строка и столбец, содержащие расстояние между кластером, полученным при объединении и прочими странами.

Расстояние между вновь полученным кластером и странами полагается равным среднему из расстояний между последними и двумя странами, которые составляют новый кластер. Иными словами, объединенная группа стран рассматривается как целоес характеристиками, примерно равными средним из характеристик входящих в него стран.

Второй шаг анализа заключается в рассмотрении преобразованной таким путем матрицы с 64 строками и столбцами. Снова выявляется пара экономик, расстояние между которыми имеет наименьшее значение, и они, так же как в первом случае, сводятся воедино. При этом наименьшее расстояниеможет оказаться как между парой стран, таки между какой-либо странойи объединением стран, полученным на предыдущем этапе.

Дальнейшие процедуры аналогичны описанным выше: на каждом этапе матрица преобразуется так, что из нее исключаются два столбца и две строки, содержащие расстояние до объектов (пар стран или объединений – кластеров), сведенных воедино на предыдущей стадии; исключенные строки и столбцы заменяются столбцоми строкой, содержащими расстояния от новых объединений до остальных объектов; далее в измененной матрице выявляется пара наиболее близких объектов. Анализ продолжается до полного исчерпания матрицы (т. е. до тех пор, пока все страны не окажутся сведенными в одно целое). Обобщенные результаты анализа матрицы можно представить в виде дерева сходства (дендограммы), подобного описанному выше, с той лишь разницей, что дерево сходства, отражающее относительную близость всех рассматриваемых нами 65 стран, много сложнее схемы, в которой фигурирует только пять народных хозяйств. Это дерево в соответствиис числом сопоставляемых объектов включает 65 уровней. Первый (нижний) уровень содержит точки, соответствующие каждых стране в отдельности. Соединение двух этих точек на втором уровне показывает пару стран, наиболее близких по общему типу народных хозяйств. На третьем уровне отмечается следующее по сходству парное соотношение стран (как уже упоминалось, в таком соотношении может находиться либо новая пара стран, либо новая странаи уже выявленная пара сходных стран). И так далее до последнего уровня, на котором все изучаемые страны выступают как единая совокупность.

В результате применения кластерного анализа были получены следующие пять групп стран:

· афро-азиатская группа;

· латино-азиатская группа;

· латино-среднеземнаморская группа;

· группа развитых капиталистических стран (без США)

· США

Введение новых индикаторов сверх используемого здесь 31 показателя или замена их другими, естественно, приводят к изменению результатов классификации стран.

2. Деление стран по критерию близости культуры.

Как известно маркетинг должен учитывать культуру стран (обычаи, традиции, и т.д.).

Посредством кластеризации были получены следующие группы стран:

· арабские;

· ближневосточные;

· скандинавские;

· германоязычные;

· англоязычные;

· романские европейские;

· латиноамериканские;

· дальневосточные.

3. Разработка прогноза конъюнктуры рынка цинка.

Кластерный анализ играет важную рольна этапе редукции экономико-математической модели товарной конъюнктуры, способствуя облегчению и упрощению вычислительных процедур, обеспечению большей компактности получаемых результатов при одновременном сохранении необходимой точности. Применение кластерного анализа дает возможность разбить всю исходную совокупность показателей конъюнктуры на группы (кластеры) по соответствующим критериям, облегчая тем самым выбор наиболее репрезентативных показателей.

Кластерный анализ широко используется для моделирования рыночной конъюнктуры. Практически основное большинство задач прогнозирования опирается наиспользование кластерного анализа.

Например, задача разработки прогноза конъюнктуры рынка цинка.

Первоначально было отобрано 30 основных показателей мирового рынка цинка:

Х 1 - время

Показатели производства:

Х 2 - в мире

Х 4 - Европе

Х 5 - Канаде

Х 6 - Японии

Х 7 - Австралии

Показатели потребления:

Х 8 - в мире

Х 10 - Европе

Х 11 - Канаде

Х 12 - Японии

Х 13 - Австралии

Запасы цинка у производителей:

Х 14 - в мире

Х 16 - Европе

Х 17 - других странах

Запасы цинка у потребителей:

Х 18 - в США

Х 19 - в Англии

Х 10 - в Японии

Импорт цинковых руд и концентратов (тыс. тонн)

Х 21 - в США

Х 22 - в Японии

Х 23 - в ФРГ

Экспорт цинковых руд и концентратов (тыс. тонн)

Х 24 - из Канады

Х 25 - из Австралии

Импорт цинка (тыс. тонн)

Х 26 - в США

Х 27 - в Англию

Х 28 - в ФРГ

Экспорт цинка (тыс. Тонн)

Х 29 -из Канады

Х 30 - из Австралии

Для определения конкретныхзависимостей был использован аппарат корреляционно-регрессионногоанализа. Анализ связей производился на основе матрицы парных коэффициентов корреляции. Здесь принималась гипотеза о нормальном распределении анализируемых показателей конъюнктуры.Ясно, что r ij являются не единственно возможным показателем связи используемых показателей. Необходимость использования кластерного анализа связано в этой задачес тем, что число показателей влияющих нацену цинка очень велико. Возникает необходимость их сократить по целому ряду следующих причин:

а) отсутствие полных статистических данных по всем переменным;

б) резкое усложнение вычислительных процедур при введении в модель большого числа переменных;

в) оптимальное использование методов регрессионного анализа требует превышения числа наблюдаемых значений над числом переменных не менее, чем в 6-8 раз;

г) стремление к использованию в модели статистически независимых переменных и пр.

Проводить такой анализ непосредственно на сравнительно громоздкой матрице коэффициентов корреляции весьма затруднительно. С помощью кластерного анализа всю совокупность конъюнктурных переменных можно разбить на группы таким образом, чтобы элементы каждого кластера сильно коррелировали между собой, а представители разных групп характеризовались слабой коррелированностью.

Для решения этой задачи был применен один из агломеративных иерархических алгоритмов кластерного анализа. На каждом шаге число кластеров уменьшается на один за счет оптимального, в определенном смысле, объединения двух групп. Критерием объединения является изменение соответствующей функции. В качестве функции такой были использованы значения сумм квадратов отклонений вычисляемые по следующим формулам:

(j = 1, 2, …, m ),

где j - номер кластера, n - число элементов в кластере.

r ij -коэффициент парной корреляции.

Таким образом, процессу группировки должно соответствовать последовательное минимальное возрастание значения критерия E .

На первом этапе первоначальный массив данных представляется в виде множества, состоящего из кластеров, включающих в себя по одному элементу. Процесс группировки начинается с объединения такой пары кластеров, которое приводит к минимальному возрастанию суммы квадратов отклонений. Это требует оценки значений суммы квадратов отклонений для каждогоиз возможных объединений кластеров. На следующем этапе рассматриваются значения сумм квадратов отклонений уже для кластеров и т.д. Этот процесс будет остановлен на некотором шаге. Для этого нужно следить за величиной суммы квадратов отклонений. Рассматривая последовательность возрастающих величин, можно уловить скачок (один или несколько) в ее динамике, который можно интерпретировать как характеристику числа групп «объективно» существующих в исследуемойсовокупности. В приведенном примере скачки имели место при числе кластеров равном 7 и 5. Далее снижать число групп не следует, т.к. это приводит к снижению качества модели. После получения кластеров происходит выбор переменных наиболее важных в экономическом смысле и наиболее тесно связанных с выбранным критерием конъюнктуры - в данном случае с котировками Лондонской биржи металлов на цинк. Этот подход позволяет сохранить значительную часть информации, содержащейся в первоначальном наборе исходных показателей конъюнктуры.

В статистике существует два основных типа кластерного анализа (оба представлены в SPSS): иерархический и осуществляемый методом k-средних. В первом случае автоматизированная статистическая процедура самостоятельно определяет оптимальное число кластеров и ряд других параметров, необходимых для кластерного

анализа. Второй тип анализа имеет существенные ограничения по практической применимости -- для него необходимо самостоятельно определять и точное количество выделяемых кластеров, и начальные значения центров каждого кластера (центроиды), и некоторые другие статистики. При анализе методом k-средних данные проблемы решаются предварительным проведением иерархического кластерного анализа и затем на основании его результатов расчетом кластерной модели по методу k-средних, что в большинстве случаев не только не упрощает, а наоборот, усложняет работу исследователя (в особенности неподготовленного).

В целом можно сказать, что в связи с тем, что иерархический кластерный анализ весьма требователен к аппаратным ресурсам компьютера, кластерный анализ по методу k-средних введен в SPSS для обработки очень больших массивов данных, состоящих из многих тысяч наблюдений (респондентов), в условиях недостаточной мощности компьютерного оборудования1. Размеры выборок, используемых в маркетинговых исследованиях, в большинстве случаев не превышают четыре тысячи респондентов. Практика маркетинговых исследований показывает, что именно первый тип кластерного анализа -- иерархический -- рекомендуется для использования во всех случаях как наиболее релевантный, универсальный и точный. Вместе с тем необходимо подчеркнуть, что при проведении кластерного анализа важным является отбор релевантных переменных. Данное замечание очень существенно, так как включение в анализ нескольких или даже одной нерелевантной переменной способно привести к неудаче всей статистической процедуры.

Описание методики проведения кластерного анализа мы проведем на следующем примере из практики маркетинговых исследований.

Исходные данные:

В ходе исследования было опрошено 745 авиапассажиров, летавших одной из 22 российских и зарубежных авиакомпаний. Авиапассажиров просили оценить по пятибалльной шкале -- от 1 (очень плохо) до 5 (отлично) -- семь параметров работы наземного персонала авиакомпаний в процессе регистрации пассажиров на рейс: вежливость, профессионализм, оперативность, готовность помочь, регулирование очереди, внешний вид, работа персонала в целом.

Требуется:

Сегментировать исследуемые авиакомпании по уровню воспринимаемого авиапассажирами качества работы наземного персонала.

Итак, у нас есть файл данных, который состоит из семи интервальных переменных, обозначающих оценки качества работы наземного персонала различных авиакомпаний (ql3-ql9), представленные в единой пятибалльной шкале. Файл данных содержит одновариантную переменную q4, указывающую выбранные респондентами авиакомпании (всего 22 наименования). Проведем кластерный анализ и определим, на какие целевые группы можно разделить данные авиакомпании.

Иерархический кластерный анализ проводится в два этапа. Результат первого этапа -- число кластеров (целевых сегментов), на которые следует разделить исследуемую выборку респондентов. Процедура кластерного анализа как таковая не

может самостоятельно определить оптимальное число кластеров. Она может только подсказать искомое число. Поскольку задача определения оптимального числа сегментов является ключевой, она обычно решается на отдельном этапе анализа. На втором этапе производится собственно кластеризация наблюдений по тому числу кластеров, которое было определено в ходе первого этапа анализа. Теперь рассмотрим эти шаги кластерного анализа по порядку.

Процедура кластерного анализа запускается при помощи меню Analyze > Classify > Hierarchical Cluster. В открывшемся диалоговом окне из левого списка всех имеющихся в файле данных переменных выберите переменные, являющиеся критериями сегментирования. В нашем случае их семь, и обозначают они оценки параметров работы наземного персонала ql3-ql9 (рис. 5.44). В принципе указания совокупности критериев сегментирования будет вполне достаточно для выполнения первого этапа кластерного анализа.

Рис. 5.44.

По умолчанию кроме таблицы с результатами формирования кластеров, на основании которой мы определим их оптимальное число, SPSS выводит также специальную перевернутую гистограмму icicle, помогающую, по замыслу создателей программы, определить оптимальное количество кластеров; вывод диаграмм осуществляется кнопкой Plots (рис. 5.45). Однако если оставить данный параметр установленным, мы потратим много времени на обработку даже сравнительно небольшого файла данных. Кроме icicle в окне Plots можно выбрать более быструю линейчатую диаграмму Dendogram. Она представляет собой горизонтальные столбики, отражающие процесс формирования кластеров. Теоретически при небольшом (до 50-100) количестве респондентов данная диаграмма действительно помогает выбрать оптимальное решение относительно требуемого числа кластеров. Однако практически во всех примерах из маркетинговых исследований размер выборки превышает это значение. Дендограмма становится совершенно бесполезной, так как даже при относительно небольшом числе наблюдений представляет собой очень длинную последовательность номеров строк исходного файла данных, соединенных между собой горизонтальными и вертикальными линиями. Большинство учебников по SPSS содержат примеры кластерного анализа именно на таких искусственных, малых выборках. В настоящем пособии мы показываем, как наиболее эффективно работать с SPSS в практических условиях и на примере реальных маркетинговых исследований.

Рис. 5.45.

Как мы установили, для практических целей ни Icicle, ни Dendogram не пригодны. Поэтому в главном диалоговом окне Hierarchical Cluster Analysis рекомендуется не выводить диаграммы, отменив выбранный по умолчанию параметр Plots в области Display, как показано на рис. 5.44. Теперь все готово для выполнения первого этапа кластерного анализа. Запустите процедуру, щелкнув на кнопке ОК.

Через некоторое время в окне SPSS Viewer появятся результаты. Как было сказано выше, единственным значимым для нас итогом первого этапа анализа будет таблица Average Linkage (Between Groups), представленная на рис. 5.46. На основании этой таблицы мы должны определить оптимальное число кластеров. Необходимо заметить, что единого универсального метода определения оптимального числа кластеров не существует. В каждом конкретном случае исследователь должен сам определить это число.

Исходя из имеющегося опыта, автор предлагает следующую схему данного процесса. Прежде всего, попробуем применить наиболее распространенный стандартный метод для определения числа кластеров. По таблице Average Linkage (Between Groups) следует определить, на каком шаге процесса формирования кластеров (колонка Stage) происходит первый сравнительно большой скачок коэффициента агломерации (колонка Coefficients). Данный скачок означает, что до него в кластеры объединялись наблюдения, находящиеся на достаточно малых расстояниях друг от друга (в нашем случае респонденты со схожим уровнем оценок по анализируемым параметрам), а начиная с этого этапа происходит объединение более далеких наблюдений.

В нашем случае коэффициенты плавно возрастают от 0 до 7,452, то есть разница между коэффициентами на шагах с первого по 728 была мала (например, между 728 и 727 шагами -- 0,534). Начиная с 729 шага происходит первый существенный скачок коэффициента: с 7,452 до 10,364 (на 2,912). Шаг, на котором происходит первый скачок коэффициента, -- 729. Теперь, чтобы определить оптимальное количество кластеров, необходимо вычесть полученное значение из общего числа наблюдений (размера выборки). Общий размер выборки в нашем случае составляет 745 человек; следовательно, оптимальное количество кластеров составляет 745-729 = 16.


Рис. 5.46.

Мы получили достаточно большое число кластеров, которое в дальнейшем будет сложно интерпретировать. Поэтому теперь следует исследовать полученные кластеры и определить, какие из них являются значимыми, а какие нужно попытаться сократить. Данная задача решается на втором этапе кластерного анализа.

Откройте главное диалоговое окно процедуры кластерного анализа (меню Analyze > Classify > Hierarchical Cluster). В поле для анализируемых переменных у нас уже есть семь параметров. Щелкните на кнопке Save. Открывшееся диалоговое окно (рис. 5.47) позволяет создать в исходном файле данных новую переменную, распределяющую респондентов на целевые группы. Выберите параметр Single Solution и укажите в соответствующем поле необходимое количество кластеров -- 16 (определено на первом этапе кластерного анализа). Щелкнув на кнопке Continue, вернитесь в главное диалоговое окно, в котором щелкните на кнопке ОК, чтобы запустить процедуру кластерного анализа.

Прежде чем продолжить описание процесса кластерного анализа, необходимо привести краткое описание других параметров. Среди них есть как полезные возможности, так и фактически лишние (с точки зрения практических маркетинговых исследований). Так, например, главное диалоговое окно Hierarchial Cluster Analysis содержит поле Label Cases by, в которое при желании можно поместить текстовую переменную, идентифицирующую респондентов. В нашем случае для этих целей может служить переменная q4, кодирующая выбранные респондентами авиакомпании. На практике сложно придумать рациональное объяснение использованию поля Label Cases by, поэтому можно спокойно всегда оставлять его пустым.

Рис. 5.47.

Нечасто при проведении кластерного анализа используется диалоговое окно Statistics, вызываемое одноименной кнопкой в главном диалоговом окне. Оно позволяет организовать вывод в окне SPSS Viewer таблицы Cluster Membership, в которой каждому респонденту в исходном файле данных сопоставляется номер кластера. Данная таблица при достаточно большом количестве респондентов (практически во всех примерах маркетинговых исследований) становится совершенно бесполезной, так как представляет собой длинную последовательность пар значений «номер респондента/номер кластера», в таком виде не поддающуюся интерпретации. Технически цель кластерного анализа всегда состоит в образовании в файле данных дополнительной переменной, отражающей разделение респондентов на целевые группы (при помощи щелчка на кнопке Save в главном диалоговом окне кластерного анализа). Эта переменная в совокупности с номерами респондентов и есть таблица Cluster Membership. Единственный практически полезный параметр в окне Statistics -- вывод таблицы Average Linkage (Between Groups), однако он уже установлен по умолчанию. Таким образом, использование кнопки Statistics и вывод отдельной таблицы Cluster Membership в окне SPSS Viewer является нецелесообразным.

Про кнопку Plots уже было сказано выше: ее следует дезактивизировать, отменив параметр Plots в главном диалоговом окне кластерного анализа.

Кроме этих редко используемых возможностей процедуры кластерного анализа, SPSS предлагает и весьма полезные параметры. Среди них прежде всего кнопка Save, позволяющая создать в исходном файле данных новую переменную, распределяющую респондентов по кластерам. Также в главном диалоговом окне существует область для выбора объекта кластеризации: респондентов или переменных. Об этой возможности говорилось выше в разделе 5.4. В первом случае кластерный анализ используется в основном для сегментирования респондентов по некоторым критериям; во втором цель проведения кластерного анализа аналогична факторному анализу: классификация (сокращение числа) переменных.

Как видно из рис. 5.44, единственной не рассмотренной возможностью кластерного анализа является кнопка выбора метода проведения статистической процедуры Method. Эксперименты с данным Параметром позволяют добиться большей точности при определении оптимального числа кластеров. Общий вид этого диалогового окна с параметрами, установленными по умолчанию, представлен на рис. 5.48.

Рис. 5.48.

Первое, что устанавливается в данном окне, -- это метод формирования кластеров (то есть объединения наблюдений). Среди всех возможных вариантов статистических методик, предлагаемых SPSS, следует выбирать либо установленный по умолчанию метод Between-groups linkage, либо процедуру Ward (Ward"s method). Первый метод используется чаще ввиду его универсальности и относительной простоты статистической процедуры, на которой он основан. При использовании этого метода расстояние между кластерами вычисляется как среднее значение расстояний между всеми возможными парами наблюдений, причем в каждой итерации принимает участие одно наблюдение из одного кластера, а второе -- из другого. Информация, необходимая для расчетов расстояния между наблюдениями, находится на основании всех теоретически возможных пар наблюдений. Метод Ward более сложен для понимания и используется реже. Он состоит из множества этапов и основан на усреднении значений всех переменных для каждого наблюдения и последующем суммировании квадратов расстояний от вычисленных средних до каждого наблюдения. Для решения практических задач маркетинговых исследований мы рекомендуем всегда использовать метод Between-groups linkage, установленный по умолчанию.

После выбора статистической процедуры кластеризации следует выбрать метод для вычисления расстояний между наблюдениями (область Measure в диалоговом окне Method). Существуют различные методы определения расстояний для трех типов переменных, участвующих в кластерном анализе (критериев сегментирования). Эти переменные могут иметь интервальную (Interval), номинальную (Counts) или дихотомическую (Binary) шкалу. Дихотомическая шкала (Binary) подразумевает только переменные, отражающие наступление/ненаступление какого-либо события (купил/не купил, да/нет и т. д.). Другие типы дихотомических переменных (например, мужчина/женщина) следует рассматривать и анализировать как номинальные (Counts).

Наиболее часто используемым методом определения расстояний для интервальных переменных является квадрат евклидова расстояния (Squared Euclidean Distance), устанавливаемый по умолчанию. Именно этот метод зарекомендовал себя в маркетинговых исследованиях как наиболее точный и универсальный. Однако для дихотомических переменных, где наблюдения представлены только двумя значениями (например, 0 и 1), данный метод не подходит. Дело в том, что он учитывает только взаимодействия между наблюдениями типа: X = 1,Y = 0 и X = 0, Y=l (где X и Y -- переменные) и не учитывает другие типы взаимодействий. Наиболее комплексной мерой расстояния, учитывающей все важные типы взаимодействий между двумя дихотомическими переменными, является метод Лямбда (Lambda). Мы рекомендуем применять именно данный метод ввиду его универсальности. Однако существуют и другие методы, например Shape, Hamann или Anderbergs"s D.

При указании метода определения расстояний для дихотомических переменных в соответствующем поле необходимо указать конкретные значения, которые могут принимать исследуемые дихотомические переменные: в поле Present -- кодировку ответа Да, а в поле Absent -- Нет. Названия полей присутствует и отсутствует ассоциированы с тем, что в группе методов Binary предполагается использовать только дихотомические переменные, отражающие наступление/ненаступление какого-либо события. Для двух типов переменных Interval и Binary существует несколько методов определения расстояния. Для переменных с номинальным типом шкалы SPSS предлагает всего два метода: (Chi-square measure) и (Phi-square measure). Мы рекомендуем использовать первый метод как наиболее распространенный.

В диалоговом окне Method есть область Transform Values, в которой находится поле Standardize. Данное поле применяется в том случае, когда в кластерном анализе принимают участие переменные с различным типом шкалы (например, интервальные и номинальные). Для того чтобы использовать эти переменные в кластерном анализе, следует провести стандартизацию, приводящую их к единому типу шкалы -- интервальному. Самым распространенным методом стандартизации переменных является 2-стандартизация (Zscores): все переменные приводятся к единому диапазону значений от -3 до +3 и после преобразования являются интервальными.

Так как все оптимальные методы (кластеризации и определения расстояний) установлены по умолчанию, целесообразно использовать диалоговое окно Method только для указания типа анализируемых переменных, а также для указания необходимости произвести 2-стандартизацию переменных.

Итак, мы описали все основные возможности, предоставляемые SPSS для проведения кластерного анализа. Вернемся к описанию кластерного анализа, проводимого с целью сегментирования авиакомпаний. Напомним, что мы остановились на шестнадцатикластерном решении и создали в исходном файле данных новую переменную clul6_l, распределяющую все анализируемые авиакомпании по кластерам.

Чтобы установить, насколько верно мы определили оптимальное число кластеров, построим линейное распределение переменной clul6_l (меню Analyze > Descriptive Statistics > Frequencies). Как видно на рис. 5.49, в кластерах с номерами 5-16 число респондентов составляет от 1 до 7. Наряду с вышеописанным универсальным методом определения оптимального количества кластеров (на основании разности между общим числом респондентов и первым скачком коэффициента агломерации) существует также дополнительная рекомендация: размер кластеров должен быть статистически значимым и практически приемлемым. При нашем размере выборки такое критическое значение можно установить хотя бы на уровне 10. Мы видим, что под данное условие попадают лишь кластеры с номерами 1-4. Поэтому теперь необходимо пересчитать процедуру кластерного анализа с выводом четы-рехкластерного решения (будет создана новая переменная du4_l).


Рис. 5.49.

Построив линейное распределение по вновь созданной переменной du4_l, мы увидим, что только в двух кластерах (1 и 2) число респондентов является практически значимым. Нам необходимо снова перестроить кластерную модель -- теперь для двухкластерного решения. После этого построим распределение по переменной du2_l (рис. 5.50). Как вы видите из таблицы, двухкластерное решение имеет статистически и практически значимое число респондентов в каждом из двух сформированных кластеров: в кластере 1 -- 695 респондентов; в кластере 2 -- 40. Итак, мы определили оптимальное число кластеров для нашей задачи и провели собственно сегментирование респондентов по семи избранным критериям. Теперь можно считать основную цель нашей задачи достигнутой и приступать к завершающему этапу кластерного анализа -- интерпретации полученных целевых групп (сегментов).


Рис. 5.50.

Полученное решение несколько отличается от тех, которые вы, может быть, видели в учебных пособиях по SPSS. Даже в наиболее практически ориентированных учебниках приведены искусственные примеры, где в результате кластеризации получаются идеальные целевые группы респондентов. В некоторых случаях (5) авторы даже прямо указывают на искусственное происхождение примеров. В настоящем пособии мы применим в качестве иллюстрации действия кластерного анализа реальный пример из практического маркетингового исследования, не отличающийся идеальными пропорциями. Это позволит нам показать наиболее распространенные трудности проведения кластерного анализа, а также оптимальные методы их устранения.

Перед тем как приступить к интерпретации полученных кластеров, давайте подведем итоги. У нас получилась следующая схема определения оптимального числа кластеров.

¦ На этапе 1 мы определяем количество кластеров на основании математического метода, основанного на коэффициенте агломерации.

¦ На этапе 2 мы проводим кластеризацию респондентов по полученному числу кластеров и затем строим линейное распределение по образованной новой переменной (clul6_l). Здесь также следует определить, сколько кластеров состоят из статистически значимого количества респондентов. В общем случае рекомендуется устанавливать минимально значимую численность кластеров на уровне не менее 10 респондентов.

¦ Если все кластеры удовлетворяют данному критерию, переходим к завершающему этапу кластерного анализа: интерпретации кластеров. Если есть кластеры с незначимым числом составляющих их наблюдений, устанавливаем, сколько кластеров состоят из значимого количества респондентов.

¦ Пересчитываем процедуру кластерного анализа, указав в диалоговом окне Save число кластеров, состоящих из значимого количества наблюдений.

¦ Строим линейное распределение по новой переменной.

Такая последовательность действий повторяется до тех пор, пока не будет найдено решение, в котором все кластеры будут состоять из статистически значимого числа респондентов. После этого можно переходить к завершающему этапу кластерного анализа -- интерпретации кластеров.

Необходимо особо отметить, что критерий практической и статистической значимости численности кластеров не является единственным критерием, по которому можно определить оптимальное число кластеров. Исследователь может самостоятельно, на основании имеющегося у него опыта предложить число кластеров (условие значимости должно удовлетворяться). Другим вариантом является довольно распространенная ситуация, когда в целях исследования заранее ставится условие сегментировать респондентов по заданному числу целевых групп. В этом случае необходимо просто один раз провести иерархический кластерный анализ с сохранением требуемого числа кластеров и затем пытаться интерпретировать то, что получится.

Для того чтобы описать полученные целевые сегменты, следует воспользоваться процедурой сравнения средних значений исследуемых переменных (кластерных центроидов). Мы сравним средние значения семи рассматриваемых критериев сегментирования в каждом из двух полученных кластеров.

Процедура сравнения средних значений вызывается при помощи меню Analyze > Compare Means > Means. В открывшемся диалоговом окне (рис. 5.51) из левого списка выберите семь переменных, избранных в качестве критериев сегментирования (ql3-ql9), и перенесите их в поле для зависимых переменных Dependent List. Затем переменную сШ2_1, отражающую разделение респондентов на кластеры при окончательном (двухкластерном) решении задачи, переместите из левого списка в поле для независимых переменных Independent List. После этого щелкните на кнопке Options.

Рис. 5.51.

Откроется диалоговое окно Options, выберите в нем необходимые статистики для сравнения кластеров (рис. 5.52). Для этого в поле Cell Statistics оставьте только вывод средних значений Mean, удалив из него другие установленные по умолчанию статистики. Закройте диалоговое окно Options щелчком на кнопке Continue. Наконец, из главного диалогового окна Means запустите процедуру сравнения средних значений (кнопка ОК).

Рис. 5.52.

В открывшемся окне SPSS Viewer появятся результаты работы статистической процедуры сравнения средних значений. Нас интересует таблица Report (рис. 5.53). Из нее можно увидеть, на каком основании SPSS разделила респондентов на два кластера. Таким критерием в нашем случае служит уровень оценок по анализируемым параметрам. Кластер 1 состоит из респондентов, для которых средние оценки по всем критериям сегментирования находятся на сравнительно высоком уровне (4,40 балла и выше). Кластер 2 включает респондентов, оценивших рассматриваемые критерии сегментирования достаточно низко (3,35 балла и ниже). Таким образом, можно сделать вывод о том, что 93,3 % респондентов, сформировавшие кластер 1, оценили анализируемые авиакомпании по всем параметрам в целом хорошо; 5,4 % -- достаточно низко; 1,3 % -- затруднились ответить (см. рис. 5.50). Из рис. 5.53 можно также сделать вывод о том, какой уровень оценок для каждого из рассматриваемых параметров в отдельности является высоким, а какой -- низким (причем данный вывод будет сделан со стороны респондентов, что позволяет добиться высокой точности классификации). Из таблицы Report можно видеть, что для переменной Регулирование очереди высоким считается уровень средней оценки 4,40, а для параметра Внешний вид -- 4.72.


Рис. 5.53.

Может оказаться, что в аналогичном случае по параметру X высокой оценкой считается 4,5, а по параметру Y -- только 3,9. Это не будет ошибкой кластеризации, а напротив, позволит сделать важный вывод относительно значимости для респондентов рассматриваемых параметров. Так, для параметра Y уже 3,9 балла является хорошей оценкой, тогда как к параметру X респонденты предъявляют более строгие требования.

Мы идентифицировали два значимых кластера, различающиеся по уровню средних оценок по критериям сегментирования. Теперь можно присвоить метки полученным кластерам: для 1 -- Авиакомпании, удовлетворяющие требованиям респондентов (по семи анализируемым критериям); для 2 -- Авиакомпании, не удовлетворяющие требованиям респондентов. Теперь можно посмотреть, какие конкретно авиакомпании (закодированные в переменной q4) удовлетворяют требованиям респондентов, а какие -- нет по критериям сегментирования. Для этого следует построить перекрестное распределение переменной q4 (анализируемые авиакомпании) в зависимости от кластеризующей переменной clu2_l. Результаты такого перекрестного анализа представлены на рис. 5.54.

По этой таблице можно сделать следующие выводы относительно членства исследуемых авиакомпаний в выделенных целевых сегментах.


Рис. 5.54.

1. Авиакомпании, полностью удовлетворяющие требованиям всех клиентов по параметру работы наземного персонала (входят только в один первый кластер):

¦ Внуковские авиалинии;

¦ American Airlines;

¦ Delta Airlines;

¦ Austrian Airlines;

¦ British Airways;

¦ Korean Airlines;

¦ Japan Airlines.

2. Авиакомпании, удовлетворяющие требованиям большинства своих клиентов по параметру работы наземного персонала (большая часть респондентов, летающих данными авиакомпаниями, удовлетворены работой наземного персонала):

¦ Трансаэро.

3. Авиакомпании, не удовлетворяющие требованиям большинства своих клиентов по параметру работы наземного персонала (большая часть респондентов, летающих данными авиакомпаниями, не удовлетворены работой наземного персонала):

¦ Домодедовские авиалинии;

¦ Пулково;

¦ Сибирь;

¦ Уральские авиалинии;

¦ Самарские авиалинии;

Таким образом, получено три целевых сегмента авиакомпаний по уровню средних оценок, характеризующиеся различной степенью удовлетворенности респондентов работой наземного персонала:

  • 1. наиболее привлекательные для пассажиров авиакомпании по уровню работы наземного персонала (14);
  • 2. скорее привлекательные авиакомпании (1);
  • 3. скорее непривлекательные авиакомпании (7).

Мы успешно завершили все этапы кластерного анализа и сегментировали авиакомпании по семи выделенным критериям.

Теперь приведем описание методики кластерного анализа в паре с факторным. Используем условие задачи из раздела 5.2.1 (факторный анализ). Как уже было сказано, в задачах сегментирования при большом числе переменных целесообразно предварять кластерный анализ факторным. Это делается для сокращения количества критериев сегментирования до наиболее значимых. В нашем случае в исходном файле данных у нас есть 24 переменные. В результате факторного анализа нам удалось сократить их число до 5. Теперь это число факторов может эффективно применяться для кластерного анализа, а сами факторы -- использоваться в качестве критериев сегментирования.

Если перед нами стоит задача сегментировать респондентов по их оценке различных аспектов текущей конкурентной позиции авиакомпании X, можно провести иерархический кластерный анализ по выделенным пяти критериям (переменные nfacl_l-nfac5_l). В нашем случае переменные оценивались по разным шкалам. Например, оценка 1 для утверждения Я бы не хотел, чтобы авиакомпания менялась и такая же оценка утверждению Изменения в авиакомпании будут позитивным моментом диаметрально противоположны по смыслу. В первом случае 1 балл (совершенно не согласен) означает, что респондент приветствует изменения в авиакомпании; во втором случае оценка в 1 балл свидетельствует о том, что респондент отвергает изменения в авиакомпании. При интерпретации кластеров у нас неизбежно возникнут трудности, так как такие противоположные по смыслу переменные могут

попасть в один и тот же фактор. Таким образом, для целей сегментирования рекомендуется сначала привести в соответствие шкалы исследуемых переменных, а затем пересчитать факторную модель. И уже далее проводить кластерный анализ над полученными в результате факторного анализа переменными-факторами. Мы не будем снова подробно описывать процедуры факторного и кластерного анализа (это было сделано выше в соответствующих разделах). Отметим лишь, что при такой методике в результате у нас получилось три целевые группы авиапассажиров, различающихся по уровню оценок выделенным факторам (то есть группам переменных): низшая, средняя и высшая.

Весьма полезным применением кластерного анализа является разделение на группы частотных таблиц. Предположим, у нас есть линейное распределение ответов на вопрос Какие марки антивирусов установлены в Вашей организации?. Для формирования выводов по данному распределению необходимо разделить марки антивирусов на несколько групп (обычно 2-3). Чтобы разделить все марки на три группы (наиболее популярные марки, средняя популярность и непопулярные марки), лучше всего воспользоваться кластерным анализом, хотя, как правило, исследователи разделяют элементы частотных таблиц на глаз, основываясь на субъективных соображениях. В противоположность такому подходу кластерный анализ позволяет научно обосновать выполненную группировку. Для этого следует ввести значения каждого параметра в SPSS (эти значения целесообразно выражать в процентах) и затем выполнить кластерный анализ для этих данных. Сохранив кластерное решение для необходимого количества групп (в нашем случае 3) в виде новой переменной, мы получим статистически обоснованную группировку.

Заключительную часть этого раздела мы посвятим описанию применения кластерного анализа для классификации переменных и сравнения его результатов с результатами факторного анализа, проведенного в разделе 5.2.1. Для этого мы вновь воспользуемся условием задачи про оценку текущей позиции авиакомпании X на рынке авиаперевозок. Методика проведения кластерного анализа практически полностью повторяет описанную выше (когда сегментировались респонденты).

Итак, в исходном файле данных у нас есть 24 переменные, описывающие отношение респондентов к различным аспектам текущей конкурентной позиции авиакомпании X. Откройте главное диалоговое окно Hierarchical Cluster Analysis и поместите 24 переменные (ql-q24) в поле Variable(s), рис. 5.55. В области Cluster укажите, что вы классифицируете переменные (отметьте параметр Variables). Вы увидите, что кнопка Save стала недоступна -- в отличие от факторного, в кластерном анализе нельзя сохранить факторные рейтинги для всех респондентов. Откажитесь от вывода диаграмм, дезактивизировав параметр Plots. На первом этапе вам не нужны другие параметры, поэтому просто щелкните на кнопке О К, чтобы запустить процедуру кластерного анализа.

В окне SPSS Viewer появилась таблица Agglomeration Schedule, по которой мы определили оптимальное число кластеров описанным выше методом (рис. 5.56). Первый скачок коэффициента агломерации наблюдается на 20 шаге (с 18834,000 до 21980,967). Исходя из общего числа анализируемых переменных, равного 24, можно вычислить оптимальное число кластеров: 24 - 20 = 4.

Рис. 5.55.


Рис. 5.56.

При классификации переменных практически и статистически значимым является кластер, состоящий всего из одной переменной. Поэтому, поскольку мы получили приемлемое число кластеров математическим методом, проведение дальнейших проверок не требуется. Вместо этого снова откройте главное диалоговое окно кластерного анализа (все данные, использованные на предыдущем этапе, сохранились) и щелкните на кнопке Statistics, чтобы организовать вывод классификационной таблицы. Вы увидите одноименное диалоговое окно, где необходимо указать число кластеров, на которое необходимо разделить 24 переменные (рис. 5.57). Для этого выберите параметр Single solution и в соответствующем поле укажите требуемое число кластеров: 4. Теперь закройте диалоговое окно Statistics щелчком на кнопке Continue и из главного окна кластерного анализа запустите процедуру на выполнение.

В результате в окне SPSS Viewer появится таблица Cluster Membership, распределяющая анализируемые переменные на четыре кластера (рис. 5.58).

Рис. 5.58.

По данной таблице можно отнести каждую рассматриваемую переменную в определенный кластер следующим образом.

Кластер 1

ql. Авиакомпания X обладает репутацией компании, превосходно обслуживающей пассажиров.

q2. Авиакомпания X может конкурировать с лучшими авиакомпаниями мира.

q3. Я верю, что у авиакомпании X есть перспективное будущее в мировой авиации.

q5. Я горжусь тем, что работаю в авиакомпании X.

q9. Нам предстоит долгий путь, прежде чем мы сможем претендовать на то, чтобы называться авиакомпанией мирового класса.

qlO. Авиакомпания X действительно заботится о пассажирах.

ql3. Мне нравится, как в настоящее время авиакомпания X представлена визуально широкой общественности (в плане цветовой гаммы и фирменного стиля).

ql4. Авиакомпания X -- лицо России.

ql6. Обслуживание авиакомпании X является последовательным и узнаваемым во всем

ql8. Авиакомпании X необходимо меняться для того, чтобы использовать в полной мере имеющийся потенциал.

ql9. Я думаю, что авиакомпании X необходимо представить себя в визуальном плане более современно.

q20. Изменения в авиакомпании X будут позитивным моментом. q21. Авиакомпания X -- эффективная авиакомпания.

q22. Я бы хотел, чтобы имидж авиакомпании X улучшился с точки зрения иностранных пассажиров.

q23. Авиакомпания X -- лучше, чем многие о ней думают.

q24. Важно, чтобы люди во всем мире знали, что мы -- российская авиакомпания.

Кластер 2

q4. Я знаю, какой будет стратегия развития авиакомпании X в будущем.

q6. В авиакомпании X хорошее взаимодействие между подразделениями.

q7. Каждый сотрудник авиакомпании прикладывает все усилия для того, чтобы обеспечить ее успех.

q8. Сейчас авиакомпания X быстро улучшается.

qll. Среди сотрудников авиакомпании имеет место высокая степень удовлетворенности работой.

ql2. Я верю, что менеджеры высшего звена прикладывают все усилия для достижения успеха авиакомпании.

Кластер 3

ql5. Мы выглядим «вчерашним днем» по сравнению с другими авиакомпаниями.

Кластер 4

ql7. Я бы не хотел, чтобы авиакомпания X менялась.

Сравнив результаты факторного (раздел 5.2.1) и кластерного анализов, вы увидите, что они существенно различаются. Кластерный анализ не только предоставляет существенно меньшие возможности для кластеризации переменных (например, отсутствие возможности сохранять групповые рейтинги) по сравнению с факторным анализом, но и выдает гораздо менее наглядные результаты. В нашем случае, если кластеры 2, 3 и 4 еще поддаются логической интерпретации1, то кластер 1 содержит совершенно разные по смыслу утверждения. В данной ситуации можно либо попытаться описать кластер 1 как есть, либо перестроить статистическую модель с другим числом кластеров. В последнем случае для поиска оптимального числа кластеров, поддающихся логическому описанию, можно воспользоваться параметром Range of solutions в диалоговом окне Statistics (см. рис. 5.57), указав в соответствующих полях минимальное и максимальное число кластеров (в нашем случае 4 и 6 соответственно). В такой ситуации SPSS перестроит таблицу Cluster Membership для каждого числа кластеров. Задача аналитика в данном случае -- попытаться подобрать такую классификационную модель, при которой все кластеры будут интерпретироваться однозначно. С целью демонстрации возможностей процедуры кластерного анализа для кластеризации переменных мы не будем перестраивать кластерную модель, а ограничимся лишь сказанным выше.

Необходимо отметить, что, несмотря на кажущуюся простоту проведения кластерного анализа по сравнению с факторным, практически во всех случаях из маркетинговых исследований факторный анализ оказывается быстрее и эффективнее кластерного. Поэтому для классификации (сокращения) переменных мы настоятельно рекомендуем использовать именно факторный анализ и оставить применение кластерного анализа для классификации респондентов.

Классификационный анализ является, пожалуй, одним из наиболее сложных, с точки зрения неподготовленного пользователя, статистических инструментов. С этим связана его весьма малая распространенность в маркетинговых компаниях. Вместе с тем именно данная группа статистических методов является и одной из наиболее полезных для практиков в области маркетинговых исследований.